Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Med (Lausanne) ; 9: 882190, 2022.
Article in English | MEDLINE | ID: covidwho-1987504

ABSTRACT

Background: Hypoxia is a potentially life-threatening condition that can be seen in pneumonia patients. Objective: We aimed to develop and test an automatic assessment of lung impairment in COVID-19 associated pneumonia with machine learning regression models that predict markers of respiratory and cardiovascular functioning from radiograms and lung CT. Materials and Methods: We enrolled a total of 605 COVID-19 cases admitted to Al Ain Hospital from 24 February to 1 July 2020 into the study. The inclusion criteria were as follows: age ≥ 18 years; inpatient admission; PCR positive for SARS-CoV-2; lung CT available at PACS. We designed a CNN-based regression model to predict systemic oxygenation markers from lung CT and 2D diagnostic images of the chest. The 2D images generated by averaging CT scans were analogous to the frontal and lateral view radiograms. The functional (heart and breath rate, blood pressure) and biochemical findings (SpO2, H C O 3 - , K +, Na +, anion gap, C-reactive protein) served as ground truth. Results: Radiologic findings in the lungs of COVID-19 patients provide reliable assessments of functional status with clinical utility. If fed to ML models, the sagittal view radiograms reflect dyspnea more accurately than the coronal view radiograms due to the smaller size and the lower model complexity. Mean absolute error of the models trained on single-projection radiograms was approximately 11÷12% and it dropped by 0.5÷1% if both projections were used (11.97 ± 9.23 vs. 11.43 ± 7.51%; p = 0.70). Thus, the ML regression models based on 2D images acquired in multiple planes had slightly better performance. The data blending approach was as efficient as the voting regression technique: 10.90 ± 6.72 vs. 11.96 ± 8.30%, p = 0.94. The models trained on 3D images were more accurate than those on 2D: 8.27 ± 4.13 and 11.75 ± 8.26%, p = 0.14 before lung extraction; 10.66 ± 5.83 and 7.94 ± 4.13%, p = 0.18 after the extraction. The lung extraction boosts 3D model performance unsubstantially (from 8.27 ± 4.13 to 7.94 ± 4.13%; p = 0.82). However, none of the differences between 3D and 2D were statistically significant. Conclusion: The constructed ML algorithms can serve as models of structure-function association and pathophysiologic changes in COVID-19. The algorithms can improve risk evaluation and disease management especially after oxygen therapy that changes functional findings. Thus, the structural assessment of acute lung injury speaks of disease severity.

2.
Front Cell Infect Microbiol ; 11: 777070, 2021.
Article in English | MEDLINE | ID: covidwho-1742203

ABSTRACT

Background: Data on the epidemiological characteristics and clinical features of COVID-19 in patients of different ages and sex are limited. Existing studies have mainly focused on the pediatric and elderly population. Objective: Assess whether age and sex interact with other risk factors to influence the severity of SARS-CoV-2 infection. Material and Methods: The study sample included all consecutive patients who satisfied the inclusion criteria and who were treated from 24 February to 1 July 2020 in Dubai Mediclinic Parkview (560 cases) and Al Ain Hospital (605 cases), United Arab Emirates. We compared disease severity estimated from the radiological findings among patients of different age groups and sex. To analyze factors associated with an increased risk of severe disease, we conducted uni- and multivariate regression analyses. Specifically, age, sex, laboratory findings, and personal risk factors were used to predict moderate and severe COVID-19 with conventional machine learning methods. Results: Need for O2 supplementation was positively correlated with age. Intensive care was required more often for men of all ages (p < 0.01). Males were more likely to have at least moderate disease severity (p = 0.0083). These findings were aligned with the results of biochemical findings and suggest a direct correlation between older age and male sex with a severe course of the disease. In young males (18-39 years), the percentage of the lung parenchyma covered with consolidation and the density characteristics of lesions were higher than those of other age groups; however, there was no marked sex difference in middle-aged (40-64 years) and older adults (≥65 years). From the univariate analysis, the risk of the non-mild COVID-19 was significantly higher (p < 0.05) in midlife adults and older adults compared to young adults. The multivariate analysis provided similar findings. Conclusion: Age and sex were important predictors of disease severity in the set of data typically collected on admission. Sexual dissimilarities reduced with age. Age disparities were more pronounced if studied with the clinical markers of disease severity than with the radiological markers. The impact of sex on the clinical markers was more evident than that of age in our study.


Subject(s)
COVID-19 , Adult , Aged , COVID-19/diagnostic imaging , COVID-19/epidemiology , Child , Female , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sexual Behavior , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL